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Figure 1. A cup with a handle.

Key Ideas

It is too hard to tell vision systems what things look like. It is easier to talk about
purpose and what things are for. Consequently, we want vision systems to use
functional descriptions to identify things, when necessary, and we want them to
learn physical descriptions for themselves, when possible.

For example, there are many kinds of cups: some have handles, some do not,
some have smooth cylindrical bodies, some are fluted: some are made of porcelain,
others are styrofoam, and still others are metal. You could turn blue in the face
describing all the physical possibilities. Functionally, however, all cups are things
that are easy to drink from. Consequently, it is much easier to convey what cups
are by saying what they are functionally.

To be more precise about what we are after, imagine that you are told cups are
open vessels, standing stably, that you can lift. You see that the object in figure
1 has a handle, an ttp~ard pointing concavity, and a flat bottom. You happen to
know it is light. Because you already know something about bowls, bricks, and
suitcases, you conclude that you are looking at a cup. You also create a physical
model covering this particular cup type.

Our first purpose, then, is to explain how physical identification can be done
using functional definitions. Our second purpose is to show how to learn physical
models using functional definitions and specific acts of identification.

It is important to note that our theory of model learning involves a physical
" example and some precedents in addition to the finctional definition:

N [he physical example is essential, for otherwise there would be no way to know
which precedents are relevanL



%1T1

" The precedents ar essential. lbr otherwise there would be no %'ay to know
which aspects of the physical example are relevant
We now proceed to explain our function-to-form theory and to illustrate the

ideas using some examples that have been run through our implementation.

Learning by Analogy and Constraint Transfer
We begin by reviewing the sort of tasks performed by the s stem that embodies
the theory of learning by analogy and constraint transfer. For details. see Winston
-19811.

" A natural language interface translates English sentences describing a precedent
and a problem into links in a semantic net.

The input English interface was conceived and written by Katz. For details, see
Katz and Winston [19821..
* A matcher determines a correspondence between the parts of the precedent and

the problem. Figure 2 illustrates.
* An analegizer determines if the questioned link in the problem is supported by

the gien links in the problem. To do this. the analogizer transfers the CAUSE
links supplied b) the precedent onto the problem. Figure 3 illustrates.

- A rule generator constructs an ;i-then rule to capture that portion of the causal
structure in the precedent that is ferreted out b. the problem. lie then part
of the if-then ruile comes from the questioned link in the problem. The if parts
come from links identified by the transferred CAUSE structure.
Thus the rules look like this:

Rule
RULE-1

if
link found using CAUSE structure
link found using CAUSE structure

then
link to be shown to hold

case
names of all precedents used

In more complicated situations, no single precedent can supply enough causal
structure. Consequently, several precedents must be strung together. A new precedent

is sought whenever there is a path in the transferred CAUSE structure that does
S"not lead to an already cstablished link in the problem. The examples in this paper
* •all use multiple precedents.

*e: Object Modeling and Recognition using ACRONYM

We continue b) ceviewing the contents of ACRONYM, a recognition-oriented
modeling system. For details, see Binford [19821.

2
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Precedent Problem

Caue--Kes hi

relationrelation hold?

hMatch
,iiuul~ml~n~~mun M atch

Figure 2. The matcher determines part correspondence using the links that populate the precedent
and the problem. lMe matcher pays particular attention to links that arc enmeshed in the CAUSE
structure of the precedent.

* ACRONYM uses generalized cylinders to describe how objects fill space.

A generali:ed cilinder is formed when a planar cross section moves along a curve in
space. sweeping out a %olume. The size of the planar cross section may change as it
moves. The angle between the planar cross section and the curve is held constant.
typically at 0. Figure 4a shows some examples.
e ACRONYM uses ribbons and ellipses to represent what a viewer sees.

Ribbons are tmo-dimensional analogs to generalized cylinders. A ribbon is formed
when a line is moved along a two-dimensional curve, perhaps changing size as it

.. " moves. The angle between the line and the curve is held constant, typically at 900.
Figure 4b shows some examples.

*6 3



Precedent Problem

S Transferred

Inetd ~ cause relation

Figure 3. flic analogizcr transfers CAUSE constraints from rthc prccedent to thc problem. The
problem is sob~cd if' links in the problem match the links carried along with the transferrd
CAUSE structure. In this simple illustration. there is only onc CAUSE link. 'Iliis CAUSE link
leads from the link to be shown to a link that already holds.

. ACRONYM predicts what objects will look like from given points of view.
To make predictions. descriptions in the form of generalized cylinders are translated
into descriptions in the form of ribbons and ellipses. Tolerances attached to the
gcnerali/ed cylinder descriptions are translated to tolerances attached to the ribbon-

* . and-ellipse descriptions. Prediction requires a great deal of complicated algebraic
and vector manipulation.

* * ACRON~YM allows top-down prediction to supervise bottom-up analysis.
Given some gen,.r, Iiied cylinders and a point of view. ACRONYMN can determine
what ribbon and ellipse shapes and sues to look fior. Once a fe~w major shapes

4
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are found, the determination can be quite specific, not only about shape and size,
but also about position. Ilaving found the ribbon corresponding to the body of an
airplane. for example. it is possible to predict the location, orientation, and size of
the ribbons corresponding to the wings.

Brooks's landmark thesis concentrated on exactly this sort of prediction [Brooks
19811.

In Principle, prediction knowledge can be used to condition the earliest vision
Procedures to the 14iatbon at hand. In current practice, early vision procedures
o -peate autonomously up to the level where ribbons and ellipses are formed. Efforts
are underway to Push predictions fuirther toward the pixels.



'he Synthesis

In this section, we briefly describe the steps involved in our synthesis of the
learning of ANALOGY and the physical representations of ACRONYM. In the
next section we illustrate the steps by explaining a particular sccnario in which the
identification and learning system recognizes one ph\ sical model of a cup, expressed
in ACRONYM's representation primitives, and then creates a model, in the form

2 of an if-then rule, for that kind of cup. Here then are the steps in the synthesis:
1. Describe the thing to be recognized in functional terms.
The functional description is given in English and translated into semantic net links.
2. Show a physical example.
At the moment, the physical description is given in English. bypassing vision.
The description is couched in the generalized-cylinder vocabulary of ACRONYM,
however. Eentually this discription will come optionally from ACRONYM.
3. Enhance the physical example's physical description.
The basic physical description, produced either from English or from an image,
occasionally r'quires English enhancement. English enhancement is required when

* there is a need to :ecord ph.sical properties such as material composition, %%eight,
and articulation, \%hich are not easil. obtained from a vision s.stem or a vision-system
prosthesis.
4. Show that the functional requirements are met by the enhanced physical

description, thus identifying the object.
ANALOGY does this using precedents. Se~eral precedents are usually necessary to
show that all of the functional requirements are met.

5. Create a physical model of the ftinctionall. -defined concept.
ANALOGY creates a physical model ill the form of an if-then rule whenever it
successfill. sho%%s that a concept's functional requirements are met by a particular
physical example. Since functional requirements usually can be met in a number of
ways, there may be a number of physical models, each generated from a different
physical example.

Once if-then based physical models are learned. examples of the concept can be
recognized directly. without reference to functional requirements or to precedents.

- Moreover, ACRONYM can use the learned physical models to make top-down
predictions about what things will be seen so that bottom-tip procedures can look

"* for those things.

Learning What an Ordinary Cup Looks Like

Now let us walk through the steps of the learning process, showing how to learn
what an ordinary cup looks like.

The first step is to describe the cup concept in terms of functional qualities such
as liftability, sta;' ty., and ability to serve is an accessible container. This is done
by way of the following English:

6
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cup

ako g

object -ak wko open-vssl
,.°h;. stable

hq liftable

Figure 5. The functional definition of a cup. 'his semantic net is produced using an English
description. AKO = A Kind Of. FIQ = Has Quality.

Let X be a definition. X is a definition of an object. The
object is a cup because it is stable, because it is liftable,
and because it is an open-vessel. Remember X.1. Of course. other, more elaborate definitions are possible, but this one seems to

us to be good enough for the purpose of illustrating our learning theory.
The English is translated into the semantic net shown in figure 5.
The next step is to show an example of a cup, such as the one in figure 6a.

ACRONYM is capable of translating such visual information into the semantic net
shown in figure 6b. But inasmuch as our connection to ACRONYM is not complete,
we currently bypass ACRONYM by using the following English instead.

Let E be an exercise. E is an exercise about a red
object. The object's body is small. The object's bottom
is flat. The object has an upward-pointing concavity.
The object has a handle.

In contrast to the definition, the qualities involved in the description of the
particular cup are all physical qualities, not functional ones. (Assume that all
qualities involving scales, like small size and light weight, arc relative to the human

*m body, by default, unless otherwise indicated.)

In the next step, we enhance the physical example's physical description. This
enables us to specify physical properties and links that are not obtainable from

-: vision.
*Q The object is light.

Now it time ti iow that the functional requirements are met by the
enhanced phy.,,v I a. :rption. To do this requires using precedents relating the

r" 7
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The
object is light..

object ako

qhq
1 light

ako handle

h 'o bottom
Hq fat

:: ± ak o

QaD body
liq-: hq small

Oc zhq a concavity
hq lupward-pointing

4 Figure 6. A particular cup, together with a semantic-net description of its physical appearance.
Most of the semantic net can be produced by ACRONYM working from an image. Some nonvisual

dctails must be pro,' ced by working through the natural language interface.

"i8
............................................



cup's functional descriptors to observed and stated physical descriptors. Three
precedents are used. One indicates a way an object can be determined to he stable:
another relates liftability to weight and having a handle: and still another explains
what being an open-vessel means. All contain one thing that is irrelevant with
respect to dealing with cLIps: these irrelevant things are representative of the detritus
that can accompany the useftl material.

Let X be a description. X is a description of a brick.
The brick is stable because the brick's bottom is flat.

The brick is hard.

Remember X.

Let X be a description. X is a description of a suitcase.
The suitcase is liftable because it is graspable and because
it is light. The suitcase is graspable because it has a
handle.

The suitcase is useful because it is a portable container
for clothes.

Remember X.

Let X be a description. X is a description of a bowl.
The bowl is an open-vessel because it has a concavity
and because the concavity is upward-pointing.

The bowl contains tomato soup.

Remember X.

With the functional definition in hand, together with relevant precedents, the
analogy apparatus is ready to work as soon as it is stimulated by the following
challenge:

In E, show that the object may be a cup.

This initiates a search for precedents relevant to showing something is a cup. The
functional definition is retrieved. Next, a matcher determines the correspondence
between parts of the exercise and the parts of the functional definition, a trivial
task in this instance. Now the verifier overlays the cause links of the functional
definition onto the exercise. Tracing through these overlayed cause links raises three
questions: is the observed object stable, is it an open vessel, and is it liftable. All

-4 this is illustrated in figure 7.

Questioning if the object is liftable leads to a second search for a precedent.
this time one that relates function to form, causing the suitcase description to be
retrieved. The suitcase description, shown in figure 8, is matched to the exercise, its
causal structure is overlayed on the exercise, and other questions are raised: is the
observed object light and does it have a handle. Since it is light and does have a
handle, the suitcase description suffices to deal with the liftable issue, leaving open
the stability and open-vessel questions.

S- 9



cup

object ako
hq I I ak-11111 open-vessel

ako 10light

(D:::hq~o bottomG~hlat
ako ip-bodyC-hq_*. small

cocait
hq upward-pointing

* Figure 7. TUhe cause links of a functional description. acingz as a precedent. arc (flcrlayed on the
exercise. leading to otlicr questioned links. Note that all Of thc cxcricisc dcscnption is physical.
albeit not all1 visual. .Jeriaed struicture is dashed.
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suit~case

ako

hq P.liftable

h light
graspable~~

cup

ako handle ~-.

hq- I Ikobjet ak -~iopeni-vessel

#171~. 9....,.stable
Lq--liftable

- -- graspable

handle

diagram.
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Thus the suiltcase precedent, in eff'ect, has a rule of inference buried in it. along
with perhaps a lot of other useless things with respect to our pirpo~se. including the
statement about why thle suitcase itself is usefu. The job of 'ailogy, then. is to find
and exploit stuch implicit rules of' inference.

Checking out stability is done Using the description of a brick. A brick is stable
because it has a fiat bottom. Similarly. to see if the object is -in open-vessel, a bowl
is used. A bowl is an open vessel becatuse it has an tipward-pointing concavity.
Figure 9 ililstrates.

At this point, there is supporting evidence for the conclusion that the exercise
object is a cup.

Now we are ready for the final task. to build a physical model of the
functionally-defined concept. This is done by constructing an if-then rule from the
links encountered in the problem-solving process: the questioned link goes to the
thzen part; the links at the bottom of the transferred CAUSE strtucture go to the
if part; and the intermediate links of thle transferred CAUSE structure go inothe
Unless part.'

-~Figure 10 i11,iu.strates the basic rule formation process.

The result follows:
Rule

RULE-i
if

[OBJECT-9 HO LIGHT]
[CONCAVITY-7 PHYSICAL-PART-OF OBJECT-9]
[HANDLE-4 PHYSICAL-PART-OF OBJEC1-9]

- . [BOTTOM-7 PHYSICAL-PART-OF OBJECT-9]
[CONCAVITY-7 AKO CONCAVITY]

* [CONCAVITY-7 110 UPWARD-POINTING]
[HANDLE-4 AKO HANDLE]
[BOTTOM-7 AKO BOTTOM]
[BOTTOM-7 HO FLAT]

* then
[OBJECT-9 AKO CUP]

* unless
[[OBJECT-9 AKO OPEN-VESSEL] HQ FALSE]
[[OBJECT-9 HQ LIFTABLE] HQ FALSE]
[[OBJECT-9 11Q GRASPABLE] HQ FALSE]
[[OBJECT-9 NQ STABLE] HQ0 FALSE]

case
DEFINITION-i DESCRIPTION-2 DESCRIPTION-3 DESCRIPTION-i

At first tile unless conditions may seem strange, for if all the ordinary conditions
hold and it' tile cauisal connections in the precedents represent certainties. then
none of* the unless conditions could trigger. H-owever. the learning system assumes
that the precedents* casal connections indicate tendencies, rather than certainties.

'Thc unh'.ss partls Ll'rne fron the links Iving between those links supplying t~he W1and then pants
id ithc rtle. 1hr J i i toipph. it must be thait there i% no direct reason t) bheli any' link in
Ole rule's Uiocs.% part. as explained h in an carlier paper l~inston 19821.

12
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Consequently. from the learning system's perspective. the unless conditions must
appear. An earlier paper gives several examples -here similar tnless conditions are
necessary [Winston 19821.

For a trace of the computer interaction behind this scenario. see note I in the
Appendix.

" Learning What a Styrofoam Cup Looks Like

Styrofoam cups without handles are described by another rule that is learned in
the same way using the same functional description. The only differences is that
liftability is handled by way of a flashlight precedent rather than by the suitcase
precedent.

Let X be a description. X is a description of a flashlight.
The flashlight is liftable because its body is graspable and
because the flashlight is light. ihe flashlight's body is
graspable because it is small and cylindrical. Remember
X.

Thus the learned rule is as follows:
Rule

RULE-2
if

[OBJECT-1O HQ LIGHT]
[CONCAVITY-8 PHYSICAL-PART-OF OBJECT-tO]
[BODY-9 PHYSICAL-PART-OF OBJECT-lO]
[BOTTOM-8 PHYSICAL-PART-OF OBJECT-lO]
[CONCAVITY-8 AKO CONCAVITY]
[CONCAVITY-8 HQ UPWARD-POINTING]
[BODY-9 AKO BODY]
[BODY-9 HO CYLINDRICAL]
[BODY-9 HQ SMALL]
[BOTTOM-8 AKO BOTTOM]
[BOTTOM-8 HQ FLAT]

then
[OBJECT-1O AKO CUP]

unless
[[OBJECT-IO AKO OPEN-VESSEL] HQ FALSE]
[[OBJECT-tO HO LIFTABLE] HQ FALSE]
([OBJECT-tO HQ STABLE] HQ FALSE]
[[BODY-9 HQ GRASPABLE] HQ FALSE]

case
* DEFINITION-i DESCRIPTION-2 DESCRIPTION-4 DESCRIPTION-I

For a trace of the computer interaction behind this scenario, see note 2 in the
Appendix.

Recognizing Cups and Using Censors
We now have two descriptions that enabl icc rcgionfcpsThecabe

used, for examr!', . on the following descriptions, con~eyed bN ACRONYM or by
the natural larguage interface:

14
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Let E be an exercise. E is an exercise about a light object.
The object's body is small. The object has a handle. The
object's bottom is flat. Its concavity is upward-pointing.
Its contents are hot. In E show that the object may be
a cup.
Let E be an exercise. E is an exercise about a light
object. The object's bottom is flat. Its body is small and
cylindrical. Its concavity is upward-pointing. Its contents
are hot. Its body's material is an insulator. In E show
that the object may be a cup.

For the first of these two exercises, the rule requiring a handle works immediately.
It is immaterial that the contents of the cup are hot.

For the second, the rule requiring a small, cylindrical body works immediately.
Again it is immaterial that the contents of the cup are hot since nothing is
known about the links among content temperature, graspability, and insulating
materials. Proving some knowledge about these things by way of some censors
makes identification more interesting.

Suppose, for example, that we teach or tell the machine that an object with hot
contents will not have a graspable body, given no reason to doubt that the object's
body is hot. Further suppose that we teach or tell the machine that an object's body
is not hot, even if its contents are, if the body is made from an insulator. All this is

0.2' captured by the following censor rules, each of which can make a simple physical
deduction:

Let -I be a Censor. C1 is a censor about an object. The
object's body is not graspable because its contents are
hot unless its body is not hot. Make C1 a censor using
the object's body is not graspable.
Let C2 be a censor. C2 is a censor about an object. The
object's contents are hot. Its body is not hot because its
body's material is an insulator. Make C2 a censor using
the object's body is not hot.

Repeating the second exercise now evokes the following scenario:
Asking whether the object is a cup activates the rule about cups without handles.

The if conditions of the rule are satisfied.
i4 The unless conditions of the rule are checked. One of these conditions states

that the object's body must not be plainly ungraspable.
Asking about graspability activates the censor relating graspability to hot

contents. The censor's ifcondition is satisfied, and the censor is about to block the
cup-identifying rule. The censor's unless condition must be checked first, however.

The censor's unless condition pertains to hot bodies. This condition activates a
second censor, the one denying that a body is hot if it is made of an insulator. This
second censor's if condition is satisfied, and there are no unless conditions.

-M



Thie second censor blocks thle first censor. Thie first censor thereibore cannot block
the cup-identifying rule. The rule identifies the object as a cuip. It would not have
worked if the contents were hot and the body were made from something other
than an insuilator.

For a trace of the computer interaction behind this scenario, see note 3 in the
Appendix.

Related Work

The theory explained in this paper builds directly on two sets of ideas: one set that
involves a theory of precedent-driven learning using constraint transfer [Winston
1979, 1981, 1982]; and another set that involves model-driven recognition using
generalized cylinders [Binford 1971, 1981. 1982; Brooks 19811.

Another important precedent to this paper is the work of Freeman and Newell
on the role of functional reasoning in design. In their paper on the subject [1971],
they proposed that available structures should he described in terms of functions
provided and functions performed, and they hinted that some of this knowledge
might be accu mu lated through experience.

Another way to learn what things look like is by nermse. ic h Ls fna
misses -as introduced by Winston 119701, several researchers ha'e offered improved
methods for exploiting near miss information. See Dietterich an Ichlk [181
for an excellent review of work by the authors, Haves-Roll), and VcrC. Also see
work bN Mitchell 119821.
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Appendix

Note I
The following is a tra-ce showing the learning of a handle-type cup. To keep things
shorter, interaction with censors is suppressed.
In E show that the object may be a cup.

I am trying to show [OBjECT-3 AKO CUP]
Supply y, n, ?. r =rules, p = precedents, or a suggestion:

I find:
DEFINITION-i < 1. links >

To use DEFINITION-i I need to know if [OBJECT-3 HQ STABLE]
I am trying to show [OBJECT-3 HQ STABLE]
Supply y, n, ?, r = rules, p = precedents, or a suggestion:

I rind:
DESCRIPTION-i < 3. links >

I note [BOTTOM-3 HO FLAT] for use with DESCRIPTION-i
I note [BOTTY-1-3 PHYSICAL-PART-OF OBJECT-3] for use with DESCRIPTION-1

I note [BOTTOM-3 AKO BOTTOM] for use with DESCRIPTION-1
The evidence from DESCRIPTION-i indicates [OBJECT-3 HQ STABLE]
To use DEFINITION-I I need to know if [OBJECT-3 HQ LIFTABLE]

I am trying to show rOBJECT-3 HQ LIFTABLE]
Supply y, n, ?, r = rules. p = precedents. or a suggestion:

I find:
DESCRIPTION-4 < 4. links >
DESCRIPTION-3 < 3. links >

I note [BODY-3 HO SMALL] for use with DESCRIPTION-4
I note [BODY-3 PHYSICAL-PART-OF OBJECT-3] for use with DESCRIPTION-4
I note LBODY-3 AKO BODY] for use with DESCRIPTION-4
To use DESCRIPTION-4 I need to know if [BODY-3 HQ CYLINDRICAL]
I am trying to show [BODY-3 HQ CYLINDRICAL]
Supply y. n, ?. r =rules, p = precedents, or a suggestion:

To use DESCRIPTION-4 I need to know if [BODY-3 1H0 GRASPABLE]
I am trying to show [BODY-3 HO GRASPABLE]
Supply y, n. ?. r =rules, p = precedents, or a suggestion:

The evidence from DESCRIPTION-4 does not indicate [OBJECT-3 HO LIFTABLE]

I note [HANDLE-2 PHYSICAL-PART-OF OBJECT-3] for use with DESCRIPTION-3

I note [IANDLE-2 AKO HANDLE] for use with DESCRIPTION-3
I note [OBJECT-3 1HQ LIGHT] for use with DESCRIPTION-3
The evidence from DESCRIPTION-3 indicates [OBJECT-3 HO LIFTABLE]
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To use DEFINITION-I I need to know if [OBJECT-3 AKO OPEN-VESSEL]

I am trying to show [OBJECT-3 AKO OPEN-VESSEL]
Supply y. n, ?, r = rules. p = precedents, or a suggestion:

I find:
DESCRIPTION-2 < 3. links >

I note [CONCAVITY-3 PHYSICAL-PART-OF OBJECT-3] for use with DESCRIPTION-

2
I note [CONCAVITY-3 AKO CONCAVITY] for use with DESCRIPTION-2
I note [CONCAVITY-3 HQ UPWARD-POINTING] for use with DESCRIPTION-2
The evidence from DESCRIPTION-2 indicates [OBJECT-3 AKO OPEN-VESSEL]
The evidence from DEFINITION-i indicates [OBJECT-3 AKO CUP]
Rule RULE-1 is derived from DEFINITION-i DESCRIPTION-2 DESCRIPTION-3
DESCRIPTION-i and looks like this:

Rule
RULE-1

if
[OBJECT-9 HQ LIGHT]
[CONCAVITY-7 PHYSICAL-PART-OF OBJECT-9]
[HANDLE-4 PHYSICAL-PART-OF OBJECT-9]
[BOTTOM-7 PHYSICAL-PART-OF OBJECT-9]
[CONCAVITY-7 AKO CONCAVITY]
[CONCAVITY-7 HQ UPWARD-POINTING]
[HANDLE-4 AKO HANDLE]
[BOTTOM-7 AKO BOTTOM]
[BOTTOM-7 HQ FLAT]

@3 then
[OBJECT-9 AKO CUP]

unless
[[OBJECT-9 AKO OPEN-VESSEL] HO FALSE]
[[OBJECT-9 HO LIFTABLE] HQ FALSE]
[[OBJECT-9 [IQ GRASPABLE] HQ FALSE]
[[OBJECT-9 HQ STABLE] HQ0 FALSE]

case
DEFINITION-1 DESCRIPTION-2 DESCRIPTION-3 DESCRIPTION-1

Should I index it as a rule?

4
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Note 2

The following is a trace showing the learning of a handle-type cup. Again. to keep
things shorter, interaction with censors is suppressed.

*. In E show that the object may be a cup.
I am trying to show [OBJECT-2 AKO CUP]
Supply y, n. ?, r = rules. p = precedents, or a suggestion:
> p

I find:
DEFINITION-i < 1. links >

To use DEFINITION-1 1 need to know if [OBJECT-2 HQ STABLE]
I am trying to show (OBJECT-2 HQ STABLE]
Supply y, n, ?, r - rules. p = precedents, or a suggestion:
> P

I find:
DESCRIPTION-i < 3. links >

I note [BOTTOM-2 HO FLAT] for use with DESCRIPTION-i
I note [BOTTOM-2 PHYSICAL-PART-OF OBJECT-2] for use with DESCRIPTION-i

I note [BOliOM-2 AKO BOTTOM] for use with DESCRIPTION-i
The evidence from DESCRIPTION-I indicates [OBJECT-2 HO STABLE]
To use DEFINITION-i I need to know if [OBJECT-2 HQ LIFTABLE]
I am trying to show (OBJECT-2 HQ LIFTABLE]
Supply y, n, . r rules, p = precedents, or a suggestion:

I find:
DESCRIPTION-4 < 5. links >
DESCRIPTION-3 < 3. links >

I note [BODY-2 HQ SMALL] for use with DESCRIPTION-4
I note [BODY-2 PHYSICAL-PART-OF OBJECT-2] for use with DESCRIPTION-4
I note [BODY-2 AKO BODY] for use with DESCRIPTION-4
I note [BODY-2 HQ CYLINDRICAL] for use with DESCRIPTION-4
I note [BODY-2 PHYSICAL-PART-OF OBJECT-2] for use with DESCRIPTION-4
I note [BODY-2 AKO BODY] for use with DESCRIPTION-4
I note [OBJECT-2 HQ LIGHT] for use with DESCRIPTION-4
The evidence from DESCRIPTION-4 indicates [OBJECT-2 HQ LIFTABLE]
To use DEFINITION-I I need to know if [OBJECT-2 AKO OPEN-VESSEL]
I am trying to show [OBJECT-2 AKO OPEN-VESSEL]

. Supply y. n. ?. r = rules. p = precedents, or a suggestion:
>p
I find:

DESCRIPTION-2 ( 3. links >
* I note [CONCAVITY-2 PHYSICAL-PART-OF OBJECT-2] for use with DESCRIPTION-

2
I note [CONCAVITY-2 AKO CONCAVITY] for use with DESCRIPTION-2
I note [CONCAVITY-2 11Q UPWARD-POINTING] for use with DESCRIPTION-2
The evidence from DESCRIPTION-2 indicates [OBJECT-2 AKO OPEN-VESSEL]
The evidence from DEFINITION-1 indicates !OBJECT-2 AKO CUP]

* Rule RULE-2 is derived from DEFINITION-i DESCRIPTION-2 DESCRIPTION-4
DESCRIPTION-I and looks like this:
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Rule
RULE -2

if
[OBJECT-ID HQ LIGHT]
[CONCAVITY-8 PHYSICAL-PART-OF OBJECT-la]
[BODY-9 PHYSICAL-PART-OF OBJECT-la]
[BOTTOM-B PHYSICAL-PART-OF OBJECT-la]
[CONCAVITY-B AKO CONCAVITY]
(CONCAVITY-B HQ UPWARD-POINTING]
[BODY-9 AKO BODY]
[BODY-9 HQ CYLINDRICAL]

r [BODY-9 HQ SMALL]
[BOTTOM-B AKO BOTTOM]
[BOTTOM-S HQ FLAT]

then
[OBJECT-iD AKO CUP]

unless
[[OBJECT-10 AKO OPEN-VESSEL].HQ FALSE]
[[OBJECT-10 HO LIFTABLE] HQ FALSE]
[[OBJECT-10 HO STABLE] HQ FALSE]
[[BODY-9 HQ GRASPABLE) HQ FALSE]

case
DEFINIT ION-i DESCRIPTION-2 DESCRIPTION-4 DESCRIPTION-I

Should I index it as a rule?

*>1
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Note 3
This is a trace of the system as it idcntifies a styrofoam-type cup with hot contents.
One censor turns off another, preventing it from turning off the identification rule,
Rule-2.
In E show that the object may be a cup.
I am trying to show [OBJECT-8 AKO CUP]
Supply y. n. ?, r = rules, p = precedents, or a suggestion:
>r
I find RULE-2 RULE-1
I note [CONCAVITY-6 HO UPWARD-POINTING] for use with RULE-2
I note [CONCAVITY-6 AKO CONCAVITY] for use with RULE-2
I note [CONCAVITY-6 PHYSICAL-PART-OF OBJECT-8] for use with RULE-2
I note [OBJECT-8 HQ LIGHT] for use with RULE-2
I note [BODY-8 AKO BODY] for use with RULE-2
I note [BODY-8 PHYSICAL-PART-OF OBJECT-8] for use with RULE-2
I note [BODY-S HO CYLINDRICAL] for use with RULE-2
I note [BODY-8 HQ SMALL] for use with RULE-2
I note [BOTTOM-6 AKO BOTTOM] for use with RULE-2
I note [BOTTOM-6 PHYSICAL-PART-OF OBJECT-8] for use with RULE-2
I note [BCTTOM-6 HO FLAT] for use with RULE-2

I am checking the validity of RULE-2 using CENSOR-i
to check whether [[BODY-8 HQ GRASPABLE] HQ FALSE]
I note [CONTENTS-5 HQ HOT] for use with CENSOR-1
I note [CONTENTS-5 PHYSICAL-PART-OF OBJECT-B] for use with CENSOR-i

I note [CONTENTS-5 AKO CONTENTS] for use with CENSOR-i
I am checking the validity of CENSOR-i using CENSOR-2
to check whether [[BODY-8 HQ HOT] HQ FALSE]
I note [MATERIAL-2 AKO INSULATOR] for use with CENSOR-?
I note [MIATERIAL-2 PHYSICAL-PART-OF BODY-8] for use with CENSOR-2

I note [MATERIAL-2 AKO MATERIAL] for use with CENSOR-2
Censor CENSOR-2 shows that [[BODY-8 HQ HOT] HQ FALSE]
indicating that CENSOR-i does not apply.

Censor CENSOR-i does not show that [[BODY-8 HQ GRASPABLE] HQ FALSE]

indicating that RULE-2 does apply.
No censor shows that [[BODY-8 HQ GRASPABLE] HQ FALSE]

The evidence from RULE-2 indicates [OBJECT-8 AKO CUP]
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